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Abstract
We apply the Wigner function formalism to derive drift-diffusion transport
equations for spin-polarized electrons in a III–V semiconductor single quantum
well. The electron spin dynamics is controlled by the spin–orbit interaction
which is linear in the momentum. In the transport regime studied, the electron
momentum scattering rate is appreciably faster than the spin dynamics. A
set of transport equations is defined in terms of a particle density, a spin
density, and the respective fluxes. The model developed allows study of the
coherent dynamics of a non-equilibrium spin polarization. As an example,
we consider a stationary transport regime for a heterostructure grown along
the (0, 0, 1) crystallographic direction. Due to the interplay of the Rashba
and Dresselhaus spin–orbit terms, the spin dynamics strongly depends on the
transport direction. The model is consistent with the results of pulse–probe
measurements of the spin coherence in strained semiconductor layers. It can
be useful in studying properties of spin-polarized transport and modelling
spintronic devices operating in the diffusive transport regime.

1. Introduction

The spin-dependent properties of the electron transport in semiconductors have recently
attracted significant attention from the scientific community in connection with the developing
fields of magnetoelectronics and spintronics [1–5]. In comparison with magnetoelectronic
devices utilizing giant magnetoresistance and tunnelling magnetoresistance effects in layered
ferromagnetic metal structures [6], semiconductor spintronic devices promise to be more
universal in application due to the possibility of adjusting the potential variation and spin
polarization in the active region of the spin devices by means of external voltages and doping
profiles [7–9]. Different designs of transistors and spin-filtering devices utilizing control of
the spin polarization in semiconductor structures have been proposed [10–19].
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It is of interest in spintronics to build a device that is tolerant of undesirable effects of the
environment and working at room temperature [1, 2, 4, 5]. However, the crucial phenomenon
for spintronic devices is the loss of the non-equilibrium spin polarization owing to spin–
environment interactions. The functionality of most of the proposed devices is sensitive to
the temperature, impurities, and internal and external fields. Detailed examination of a spin
transport problem in semiconductor structures is required for modelling of realistic processes
in such devices.

In this work we study spin-polarized transport in a two-dimensional non-degenerate
electron gas (2DEG) in a III–V semiconductor heterostructure in the collision dominated
regime [20], where the electron momentum scattering rate is appreciably faster than the spin
dynamics. In general, this approximation is applicable for transport in heterostructures with a
weak spin–orbit coupling at high temperature. For example, in GaAs/AlGaAs heterostructures
for T ∼ 100 K or higher the electron momentum scattering is mostly governed by the emission
of polar optical phonons [21]. This is true even at lower temperatures if a moderate or strong
electric field is applied. The characteristic scattering rate for this process is of the order of
several 1012 s−1 [21]. The spin evolution in III–V semiconductors without external magnetic
fields is mostly controlled by the spin–orbit interaction [20, 22]. It can be characterized
by a spin precession frequency, �. According to recent measurements, for a Ga/AlGaAs
heterostructure � ∼ 1010–1011 s−1 [23, 24]. This shows that during one period of spin
precession an electron experiences many collisions. The question is whether this spin transport
regime can be useful for spintronics. Since the seminal proposal of a spin field effect transistor
(spin-FET) by Datta and Das [10], utilization of the spin–orbit interaction in spintronic devices
has remained an attractive idea [13–17]. A comprehensive review of the spin–orbit coupling
effects for the purposes of spintronics can be found in [25]. For such devices, due to the
electric field dependence of the spin–orbit coupling constants, a conventional electric gate
can be used to control the coherent electron spin dynamics [10, 13–17]. However, the same
spin–orbit interaction mechanism leads to spin dephasing due to the randomization of the
electron momentum (the Dyakonov–Perel spin relaxation mechanism [20, 22, 26]). To avoid
undesirable effects of this coupling, device models [10, 13–15] were proposed for the ballistic
transport regime. In the recent work by Schliemann et al [16] it was shown that in some cases
the spatial electron motion and the spin evolution can be decoupled owing to the symmetry of
the Rashba [27] and Dresselhaus [28] spin–orbit interaction terms. The effect of momentum
scattering on the spin coherent dynamics can be diminished and the spin-FET design [10] is
applicable in the diffusive transport regime [16, 29]. Moreover, Schliemann et al have proposed
a non-ballistic spin-FET [16], in which the spin dephasing is controlled by an external gate.
Another design of a spin-FET utilizing only non-magnetic materials and operating with a spin
dephasing rate in semiconductor heterostructures was proposed in [17]. These devices can be
operational in the semiclassical diffusive transport regime that is of interest in this work.

The general drift-diffusion approach to spin-polarized transport is based on the two-state
(spin-up and spin-down) model originally developed for ferromagnetic metals [30, 31]. The
phenomenological model for non-collinear spin transport including the effects of spin–orbit
coupling has been developed for the regime where the spin dynamics is significantly faster than
the momentum scattering rate [32, 33]. Although these models can be useful for investigation
of a broad class of transport problems in semiconductors [7–9, 32–34], they do not include the
effects of a spin phase memory and are inapplicable in problems where quantum superposition
of spin-up and spin-down states plays an important role [10]. The spin density matrix or spin
polarization vector description of a spin state [35–37] is more appropriate for this case.

In our model we use the Wigner function representation for an electron with spin [38].
This approach was utilized before for different transport problems including the effects of
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quantum potentials [39],quantum collisions [40],and electron transport in magnetic fields [41].
Recently, it has been applied to study spin-polarized electron transport in semiconductor
heterostructures in the ballistic regime [42]. We consider the semiclassical transport regime
where collisions with phonons and impurities control the transport properties. We show that
in this model the Wigner function transport equation can be reduced to a set of drift-diffusion
equations for a particle density, a particle current, a spin density, and a spin current.

2. Model

In most spintronic devices utilizing spin–orbit interaction in semiconductor heterostructures
to control the spin dynamics [10, 13–17], electrons are confined by the effective potential
in the direction orthogonal to the semiconductor interface and propagate in the plane of the
heterostructure. The effective mass Hamiltonian for an in-plane electron motion in the one-
subband approximation can be written as

H = p2

2m∗ + V (r) + HSO,

HSO = pAσ/h̄.

(1)

It is assumed that the electron motion in the direction of quantization can be decoupled from
the motion in the plane of a quantum well (QW) and that the electron kinetic energy is small in
comparison with the subband splitting. The shape of the conduction band is assumed parabolic.
The operators for the electron momentum, p, and the spatial position, r, are defined as two-
dimensional vectors in the plane of the QW, while the spin operator, σ, is a three-dimensional
vector. The potential, V (r), corresponds to the interaction with an electric field oriented in
the plane of the QW. The spin–orbit interaction term, HSO, is written in a general dyadic form
linear in the electron momentum. This term is assumed small in comparison with other terms
in the Hamiltonian, H . The matrix elements A jα are constants of the spin–orbit interaction,
coupling the j th componentof the momentum with the αth component of the spin. Here, and in
the following, we use Latin letters to index vector or matrix components in spatial dimensions
and Greek letters to index components in the spin space. We set the z axis of the spatial
coordinate system in the direction orthogonal to the QW plane, while the orientation of the
spin coordinate system is left unspecified. An arbitrary rotation of the spin coordinate system
will affect the form of the spin–orbit coupling matrix A, but not the general representation of
equation (1).

The quantum state of an electron with spin can be described by the density matrix operator,
ρ(r, r′, s, s ′, t), which is dependent on two coordinate variables and two spin variables. After
transformation to the new spatial representation,

R = (r + r′)/2,

�r = r − r′,
(2)

the equation for the density matrix will be

ih̄
∂ρ

∂ t
= − h̄2

m∗
∑

j

∂2ρ

∂ R j∂�r j
+ (V (R + �r/2) − V (R − �r/2))ρ

+
i

2

∑
j,α

A jα

{
σα,

∂ρ

∂ R j

}
+ i
∑
j,α

A jα

[
σα,

∂ρ

∂�r j

]
. (3)

The effect of spin–orbit interaction is introduced by the last two terms in equation (3), where
[σ, . . .] and {σ, . . .} are the commutator and anticommutator with the Pauli spin matrices
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respectively. Following the standard transformation to the Wigner function [38],

Wss ′ (R, k, t) =
∫

ρ(R,�r, s, s′, t)e−ik�r d2� r, (4)

and assuming that the potential V (r) varies slowly and smoothly with the position r, we obtain
the transport equation for a single electron with spin:

∂W

∂ t
+

1

2

{
v j ,

∂W

∂x j

}
− 1

h̄

∂V

∂x j

∂W

∂k j
+ ik j [v j , W ] = StW. (5)

On the right-hand side of equation (5) we have included the phenomenological scattering term,
StW , responsible for the interactions of an electron with phonons and non-magnetic impurities.
Unlike [35, 43], we are interested in a transport regime where the electron–electron interaction
produces small effects on the spin dynamics in comparison with the effects of the phonon and
impurity scattering [20, 22].

In the spin space the velocity operator,

v j = ∂ H

∂p j
, (6)

and the Wigner function, W , are (2 × 2) matrices, while the potential, V (r), and the electron
wavevector, k, are scalar variables. The last term on the left-hand side of equation (5) expresses
the spin rotation. Matrix equation (5) can be projected onto the set of Pauli matrices, σα , and
the unit matrix, I , using the following relations for the Wigner function [40]:

W = 1
2 (Wn I + Wσα

σα), (7)

and the velocity operator:

v j = (v j
n I + v j

σα
σα), v j

n = h̄k j/m∗, v j
σα

= A jα/h̄. (8)

In the zeroth order of approximation of the spin–orbit coupling constant, A jα, scattering events
do not couple different spin components of the Wigner function. The collision term possesses
a semiclassical form:

StW (R, k, t) =
∫

S(k, k′)(W (R, k′, t) − W (R, k, t)) d2k ′, (9)

where S(k, k′) is the transition rate for electrons without spin. We use the relaxation time
approximation for equation (9) with the same set of assumptions as are usually applied for
transport in III–V semiconductors [21]. Corrections to the collision term, StW , linear in the
spin–orbit interaction [44], mix spin-polarized components of the Wigner function, Wσ , with
the non-polarized function, Wn , and produce the effect of the electron spin polarization by the
in-plane electric field [36, 44–46]. We do not consider this effect owing to the assumption that
the spin–orbit coupling is small in comparison with the electron kinetic energy.

To get drift-diffusion transport equations in terms of macroscopic variables we apply the
moment expansion procedure [47] to equation (5). The (2 ×2) matrices of the particle density
and current density at the position R are defined as

n(R) =
∫

W d2k (10)

and

J j (R) = 1
2

∫
{v j , W } d2k, (11)
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Figure 1. Different electron spin-polarized states in a 2DEG: (a) an electron state created with
energy conservation; (b) an electron state created with wavevector conservation.

respectively. Similarly to equations (7) and (8), these matrix variables are projected onto the
set of the basis matrices (σα, α = x, y, z, and I ) to get relations for the particle density, spin
density, particle current density, and spin current density [35]:

nn =
∫

Wn d2k,

nσα
=
∫

Wσα
d2k,

(12)

J j
n =

∫
(v j

n Wn + v j
σα

Wσα
) d2k,

J j
σα

=
∫

(v j
n Wσα

+ v j
σα

Wn) d2k.

(13)

The vector of the spin density can be expressed as nσ(R) = nn(R)P(R), where P(R) is,
normalized to one, the spin polarization vector [48] of a small area, d2r , of 2DEG at the
position R. The spin density, nσ(R), corresponds to the density of the magnetic moment
as µ(R) = −gµBnσ(R). We assume that the vectors of the particle and spin currents,
equation (13), can be written using the average flow velocity, 〈v j 〉, as

J j
n = 〈v j 〉nn + (v j

σα
− h̄〈�k j

σα
〉/m∗)nσα

,

J j
σα

= 〈v j 〉nσα
+ (v j

σα
− h̄〈�k j

σα
〉/m∗)nn .

(14)

An additional parameter, 〈�k j
σα

〉, is introduced to define an electron spin-polarized state.
For electrons injected from a ferromagnetic contact to the QW it is simple to show that
〈�k j

σα
〉 = m∗v j

σα
/h̄ (see figure 1(a)), owing to the particle density and current density

conservation at the interface [49]. Another possible electron spin-polarized state has been
considered in the work by Mishschenko and Halperin [42], where 〈�k j

σα
〉 = 0; see figure 1(b).

In this work we study the first case, where the electron spin-polarized state is created with
constant energy rather than a constant electron wavevector. Moreover, we assume that the
electron state is inhomogeneously broadened in momentum space due to temperature effects,
and that the electron velocity can be expanded about the macroscopic flux velocity as

v j = 〈v j 〉 + δv j . (15)
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The particle and spin conservation equations are obtained by integration of equation (5) over
an electron wavevector:

∂nn

∂ t
+

∂ J j
n

∂x j
= 0,

∂nσ

∂ t
+

∂ J j
σ

∂x j
− 2m∗

h̄
[v j

σ × J j
σ ] = 0.

(16)

The effect of spin–orbit interaction appears in the second equation as a rotational term, where
[aσ × bσ] is used for vector multiplication in the spin space. This term is proportional to the
average flow velocity, unlike in the case of spin-polarized transport in an external magnetic
field [37]. The drift-diffusion equations for the particle and spin currents are derived by
applying the operator

1
2

∫
{v j , . . .} d2k (17)

to equation (5). Assuming the conventional relation 〈δv j
n δvl

n〉 = δ jlkT/m∗, we obtain the
particle current density and spin current density:

J j
n = − τ

m∗

(
kT

∂nn

∂x j
+

∂V

∂x j
nn

)
,

J j
σ = − τ

m∗

(
kT

∂nσ

∂x j
+

∂V

∂x j
nσ − 2m∗kT

h̄
[v j

σ × nσ]

)
.

(18)

In equation (18) we neglected terms quadratic in v j
σ mixing polarized and non-polarized

components of the current. These corrections should be considered in the model, accounting
for non-conservation of the spin current density (equation (11)) in systems with a spin–orbit
interaction [50]. The term proportional to [v j

σ × nσ] is responsible for the Dyakonov–Perel
spin relaxation [20, 22]. Within the approximations applied, equations (16) and (18) do not
mix electron transport in different spatial directions. Therefore, the spin-polarized transport
in the 2DEG can be considered as a 1D problem.

The set of the drift-diffusion transport equations (16) and (18) for spin-polarized electrons
in the presence of the spin–orbit interaction term linear in momentum is the main result of
this work. To include the effects of an electron–electron interaction in the effective field
approximation, the transport equations (16) and (18) should be supplemented with the Poisson
equation.

3. Examples and discussion

We apply the derived equations to study transport in an asymmetric single QW grown in the
(0, 0, 1) direction in terms of the crystallographic axes. The electric field in the plane of the
QW is assumed homogeneous and equal to the external field, E . The x axis of the spatial
coordinate system is oriented along the electric field and forms an angle ξ with the (1, 0, 0)
direction in the xy plane. The spin–orbit interaction term, linear in the electron wavevector, is

HSO = kx(σy(β〈k2
z 〉 sin 2ξ − η) − σxβ〈k2

z 〉 cos 2ξ)

+ ky(σx(β〈k2
z 〉 sin 2ξ + η) + σyβ〈k2

z 〉 cos 2ξ), (19)

where the spin coordinate system is oriented parallel to the spatial one. The parameters η and
β are the Rashba [27] and Dresselhaus [28] spin–orbit coupling constants respectively. For the
following derivation we specify a new spin coordinate system. The z spin axis is parallel to
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the effective magnetic field produced by spin–orbit interaction (equation (19)) for an electron
propagating along the external electric field direction. The y spin axis is orthogonal to the QW
plane. In this coordinate system the spin–orbit term, HSO (equation (1)), is

HSO = Axzkxσz + (Ayxσx + Ayzσz)ky,

Axz =
√

η2 + (β〈k2
z 〉)2 − 2ηβ〈k2

z 〉 sin 2ξ,

Ayx = ((β〈k2
z 〉)2 − η2)/Axz ,

Ayz = −2ηβ〈k2
z 〉 cos 2ξ/Axz .

(20)

With the notation utilized, the spin polarization of electrons propagating parallel the x axis
will precess about the z spin axis. In the case of Rashba spin–orbit interaction only, η �= 0,
β = 0, the z spin axis is oriented along the y spatial axis. For a non-zero Dresselhaus term,
η = 0, β �= 0, it is parallel to the x axis.

The drift-diffusion spin transport equation is

∂nσ

∂ t
− D

∂2nσ

∂x2
− α

∂nσ

∂x
+ βnσ = 0, (21)

where

D =
( D 0 0

0 D 0
0 0 D

)
, α =

(
µE 2Bxz D 0

−2Bxz D µE 0
0 0 µE

)
,

β =

 D(B2

xz + B2
yz) −µE Bxz −Byx Byz D

µE Bxz D(B2
xz + B2

yx + B2
yz) 0

−Byx Byz D 0 DB2
yx


 ,

D = kT τ

m∗ , µ = − eτ

m∗ , B jα = 2m∗ A jα

h̄2
.

(22)

We consider a few examples of spin dynamics in a 2DEG using equation (21):

(1) At time t = 0 the 2DEG is homogeneously polarized, E = 0, and only one spin–orbit
interaction mechanism (Rashba or Dresselhaus) is responsible for the spin evolution.
Equation (21) is transformed to the spin relaxation equation

∂nσ

∂ t
= −βnσ, (23)

where the coupling coefficients β are equal to that derived in the work [22].
(2) Stationary injection of spin-polarized electrons at the position x = 0 into an infinite QW.

The spin–orbit constants are coupled by the relation η = β〈k2
z 〉. Equation (21) can be

diagonalized for any orientation of electron transport with respect to the crystallographic
directions. The solution is

nσx = n0
σx

exp

{
−
(

µE

2D
+

√√√√(µE

2D

)2

+ B2
yz

)
x

}
cos(Bxz x),

nσy = n0
σy

exp

{
−
(

µE

2D
+

√√√√(µE

2D

)2

+ B2
yz

)
x

}
sin(Bxz x),

nσz = n0
σz

exp

{
−
(

µE

2D
+

∣∣∣∣µE

2D

∣∣∣∣
)

x

}
.

(24)
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Analogously to [16], for the z component of the spin polarization the Dyakonov–Perel
spin relaxation mechanism [20, 22] is suppressed. The transverse component of the spin
polarization evolves about the effective magnetic field and decays with the characteristic

spin dephasing length L⊥ =
(

µE
2D +

√(
µE
2D

)2

+ B2
yz

)−1

. The effect of the electric field,

E , on the transverse spin dephasing length is similar to that obtained in [51] and later
considered in [8, 37]. The remarkable property of the solution (24) is that the temperature
affects coefficients B jα through an effective mass only. Usually, this effect is weak.
Therefore, the distributions of the spin polarization should be nearly the same at different
temperatures once the relation µE/D is conserved.
We estimate the length of the coherent spin precession, Lp = 2π/Bxz , and the transverse
spin dephasing length, L⊥, for a 10 nm width GaAs/AlGaAs QW. The Dresselhaus
spin–orbit constant β = 25.5 eV Å3 is taken from [52]. This corresponds to β〈k2

z 〉 =
0.025 eV Å. The same order of the value for the Rashba spin–orbit coupling constant
can be achieved by an appropriate doping of a heterostructure. The calculated values of
the spin dephasing and spin precession lengths for different orientations of the electron
transport are shown in figure 2.
The essential requirement for the realization of the spin-FET proposed by Datta and
Das [10] is Lp � L⊥. As follows from figure 2, this relation is valid for transport within
the small angle about the (1,−1, 0) direction in terms of the crystallographic axes. The
applied electric field increases the spin dephasing length while it does not affect the spin
precession length. Moreover, the range of transport directions usable for the spin-FET [10]
varies with the in-plane electric field.

(3) Stationary injection of spin-polarized electrons into a 10 nm width GaAs/AlGaAs QW
along the (1,−1, 0) crystallographic direction. At the injection boundary nσx = 0,
nσy = 0, nσz = n0

σz
. The spin–orbit coupling constants are not equal. This configuration

can be utilized for the spin-FET proposed by Schliemann et al [16]. The longitudinal spin
density component, nσz , decays as

nσz = n0
σz

exp

{
−
(

µE

2D
+

√√√√(µE

2D

)2

+ B2
yx

)
x

}
(25)

where Byx = 2m∗�η/h̄2. The calculated spin dephasing length, L‖, as a function of
the relative difference of the spin–orbit constants, � = |η/(β〈k2

z 〉) − 1|, is shown in
figure 3. Design of a non-ballistic spin-FET [16] requires efficient modulation of the
spin scattering length from L‖ 
 LD to L‖ � LD (LD is the device length), varying the
difference between the Rashba and Dresselhaus spin–orbit constants. As follows from our
calculations (see figure 3), the device operation can be optimized for different relations
between η and β〈k2

z 〉 by varying the in-plane electric field. For example, if the allowable
range of spin dephasing lengths is limited to LD/3 < L‖ < 3LD, then for the device length
LD = 3 µm, � should be varied in the ranges 0.03 < � < 0.22 (E = −0.01 V cm−1),
0.08 < � < 0.3 (E = −100 V cm−1), 0.13 < � < 0.42 (E = −300 V cm−1),
and 0.22 < � < 0.69 (E = −1 kV cm−1). Recent experiments demonstrate that 25%
variations of the parameter � can be easily achieved for GaAs/AlGaAs QWs [23].

Although within the model developed for � = 0 the Dyakonov–Perel spin relaxation is
completely suppressed for spatial transport along the (1,−1, 0) direction, other spin scattering
mechanisms will determine the spin dephasing. For example, it was shown in [53] that
spin–orbit terms cubic in an electron momentum can appreciably modify the spin dynamics
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Figure 2. The spin precession length (a) and transverse spin dephasing length (b) for different
transport orientations with respect to the (0, 0, 1) direction in terms of the crystallographic axes at
room temperature.

Figure 3. The longitudinal spin dephasing length as a function of the relative difference of the spin–
orbit constants � = |η/(β〈k2

z 〉) − 1| for different values of the applied electric field at T = 300 K.
The electric field is along the (1,−1, 0) direction.

during the ballistic transport in a quasi-1D structure. The upper limit for the spin dephasing
length will possibly be defined by the spin scattering at nuclear spins [54]. For high electron
concentrations electron–electron collisions will affect the spin dynamics even without the
momentum dissipation [35, 43, 55]. Moreover, the relaxation time approximation is a rough
model for transport in polar semiconductors [56]. However, we assume that equations (21)
and (22) can be valid for a more general, field-dependent form of the diffusion coefficient and
mobility D(E), µ(E) [21]. These transport parameters can be obtained from a Monte Carlo
modelling [57, 58].

All-electric measurements of the spin polarization in semiconductor heterostructures [59–
61] are complicated by additional spin-independent effects [60]. Existing results do not have
a single theoretical explanation [32, 33, 60, 62]. However, our model is consistent with results
obtained in experiments on optical manipulation of spin coherence in strained semiconductor
layers [63]. For spin transport along the (1,−1, 0) direction, the spin polarization rotates by
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the angle ϕ = π in a distance l ≈ 23 µm. This value is independent of the electric field in
the range studied. Moreover, in stronger electric fields the spin coherence is conserved for a
longer distance. Both of these features agree with our results (equation (24)).

A drift-diffusion transport equation similar to equation (21) has been obtained by
Pershin [64] within a stochastic approach.

4. Conclusions

We have developed a semiclassical drift-diffusion model for spin-polarized transport in a non-
degenerate 2DEG controlled by the spin–orbit interaction linear in the electron momentum.
The effects of an in-plane electric field and the transport orientation with respect to the
crystallographic directions are discussed for a single quantum well grown in the (0, 0, 1)
direction in terms of the crystallographic axes. The model derived agrees with results of
optical measurements of the coherent spin dynamics in semiconductor layers. It could be
useful for spintronic device modelling.

Acknowledgments

I am grateful to M-C Cheng, D Mozyrsky, V Privman and M Shen for useful discussions.
This research was supported by the National Security Agency and Advanced Research and
Development Activity under Army Research Office contract DAAD-19-02-1-0035, and by the
National Science Foundation, grant DMR-0121146.

References

[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y and
Treger D M 2001 Science 294 1488

[2] Das Sarma S 2001 Am. Sci. 89 516
[3] Awschalom D D, Flatte M E and Samarth N 2002 Sci. Am. 286 66
[4] Akinaga H and Ohno H 2002 IEEE Trans. Nanotechnol. 1 19
[5] Das Sarma S, Fabian J, Hu X and Zutic I 2000 IEEE Trans. Magn. 36 2821
[6] Parkin S, Jiang X, Kaiser C, Panchula A, Roche K and Samant M 2003 Proc. IEEE 91 61
[7] Zutic I, Fabian J and Das Sarma S 2002 Phys. Rev. Lett. 88 066603
[8] Yu Z G and Flatte M E 2002 Phys. Rev. B 66 235302
[9] Pershin Y V and Privman V 2003 Phys. Rev. Lett. 90 256602

[10] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[11] Vrijen R, Yablonovitch E, Wang K, Jiang H W, Balandin A, Roychowdhury V, Mor T and DiVincenzo D 2000

Phys. Rev. A 62 012306
[12] Mani R G, Johnson W B, Narayanamurti V, Privman V and Zhang Y H 2002 Physica E 12 152
[13] Wang X F, Vasilopoulos P and Peeters F M 2002 Appl. Phys. Lett. 80 1400
[14] Governale M, Boese D, Zulicke U and Schroll C 2002 Phys. Rev. B 65 140403
[15] Egues J C, Burkard G and Loss D 2003 Appl. Phys. Lett. 82 2658
[16] Schliemann J, Egues J C and Loss D 2003 Phys. Rev. Lett. 90 146801
[17] Hall K C, Lau W H, Gundogdu K, Flatte M E and Boggess T F 2003 Appl. Phys. Lett. 83 2937
[18] Flatte M E, Yu Z G, Johnson-Halperin E and Awschalom D D 2003 Appl. Phys. Lett. 82 4740
[19] Fabian J, Zutic I and Das Sarma S 2004 Appl. Phys. Lett. 84 85
[20] Dyakonov M I and Perel V I 1971 Zh. Eksp. Teor. Fiz. 60 1954

Dyakonov M I and Perel V I 1971 Sov. Phys.—JETP 33 1053 (Engl. Transl.)
[21] Shur M 1987 GaAs Devices and Circuits (New York: Plenum)
[22] Dyakonov M I and Kachorovskii V Yu 1986 Fiz. Tekh. Poluprov. 20 178

Dyakonov M I and Kachorovskii V Yu 1986 Sov. Phys.—Semicond. 20 110 (Engl. Transl.)
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